
Introduction to Computer Architecture
(Parallel and Pipeline processors)

KR Chowdhary
Professor & Head

Email: kr.chowdhary@gmail.com

webpage: krchowdhary.com

Department of Computer Science and Engineering
MBM Engineering College, Jodhpur

November 22, 2013

KR Chowdhary Parallel and Pipeline processors 1/ 21



Classification of parallel Processors

◮ One classification by M.J. Flynn
considers the organization of a
computer system by the number
of instructions and data items
that can be manipulated
simultaneously.

◮ The sequence of instructions read
from the memory constitute an
instruction stream.

◮ The operation performed on data
in the processor constitutes a
data stream.

◮ Parallel processing may occur in
instruction stream stream or data
stream, or both.

1. Single-instruction single-data
streams (SISD): Instructions are
executed sequentially.

2. Single-instruction multiple-data
streams (SIMD): All processors
receive the same instruction from
control unit, but operate in
different sets of data.

3. Multiple-instruction single-data
streams (MISD): It is of
theoretical interest only as no
practical organization can be
constructed using this
organization.

4. Multiple-instruction multiple-data
streams (MIMD): Several
programs can execute at the
same time. Most multiprocessors
come in this category.

KR Chowdhary Parallel and Pipeline processors 2/ 21



Flynn’s taxonomy of computer architecture(1966)

Instruction stream

Instr. stream data stream

1. SISD

Control unit Processor (P) memory (M)

Program loaded

from front end

data stream

data

P1

Pn

M1

Mn

CU
b
b
b

b
b
b

b
b
b

2. SIMD

I/O

stream

Figure 1: SISD and SIMD architecture

Instruction stream

Instr. stream data stream

Control unit Processor Memory

Instruction stream

Instr. stream data stream

Control unit Processor memory

b
b
b

b

b
b

3. MIMD

1 1 1

n n n

Figure 2: MIMD Architecture.

One of the parallel processing class that does not fit into this classification is
pipeline processing.

KR Chowdhary Parallel and Pipeline processors 3/ 21



Parallel processing

Parallel Processing:

◮ Increasing speed by doing many things in parallel.

◮ Let P is a sequential processor processing the task T in sequential
manner. If T is partitioned into n subtasks T1,T2, . . . ,Tn of appox. same
size, then a processor P

′

(say) having n processors can be programmed so
that all the subtasks of T can execute in parallel.

◮ Then P
′

executes n times faster than P.

◮ A failure of CPU is fatal to a sequential processor, but not in the case of
parallel processor.

◮ Some of the applications of parallel computer (processors) are:
1. Expert system for AI
2. Fluid flow analysis,
3. Seismic data analysis
4. Long range weather forecasting,
5. Computer Assisted tomography
6. Nuclear reactor modeling,
7. Visual image processing
8. VLSI design

◮ The typical characteristic of parallel computing are: vast amount of
computation, floating point arithmetic, vast number of operands.

KR Chowdhary Parallel and Pipeline processors 4/ 21



Computational Models

◮ We assume that a given computation can be divided into concurrent tasks
for execution on the multiprocessor.

◮ Equal Duration Model: A given task can be divided into n equal subtasks,
each of which can be executed by one processor. If ts is the execution
time of the whole task using a single processor, then the time taken by
each processor to execute its subtask is tm = ts/n. Since, according to this
model, all processors are executing their subtasks simultaneously, then the
time taken to execute the whole task is tm = ts/n.

◮ The speedup factor of a parallel system can be defined as the ratio

between the time taken by a single processor to solve a given problem

instance to the time taken by a parallel system consisting of n processors

to solve the same problem instance.

S(n) = speedup factor

=
ts

tm

=
ts

ts/n
= n

KR Chowdhary Parallel and Pipeline processors 5/ 21



Pipelining

◮ A typical example of parallel processing is a one-dimensional array of
processors, where there are n identical processors P1 . . .Pn and each having
its local memory. These processors communicate by message passing
(send - receive).

b b b

b b b
P1 P2 Pn

serial IO -operations(send-receive)

Figure 3: Pipeline processing.

◮ There are total n operations going on in parallel.
◮ A pipe line constitutes a sequence of processing circuits, called segments

or stages.
- m stage pipeline has same throughput as m separate units.

segment 1 segment 2 segment m

R1 C1 R2 C2 Rm Cm
R

Ri: Buffer register Ci: Computing element

Figure 4: Pipeline segments
KR Chowdhary Parallel and Pipeline processors 6/ 21



Pipeline Processors

1. Instruction pipeline: Transfer of instructions through various stages of cpu,
during instruction cycle: fetch, decode, execute. Thus, there can be three
different instructions in different stages of execution: one getting fetched,
previous of that is getting decoded, and previous to that is getting
executed.

2. Arithmetic pipeline: The data is computed through different stages.

segment 1 segment 2 segment 3

istr. fetch Instr. decode Instr. execute
instruction results

X = (XM , XE), Y = (YM , YE)

segment 1

compare align add normalize
exponent mantissa mantissa resulst

seg. 2 seg. 3 seg. 4

Instr. adr.

X + Y

Figure 5: Instruction and data pipeline examples.

KR Chowdhary Parallel and Pipeline processors 7/ 21



Pipe-lining Example

◮ Consider an example to compute: Ai ∗Bi +Ci , for i = 1,2,3,4,5. Each
segment has r registers, a multiplier, and an adder unit.

R1 R2

Multiplier

R3

Adder

R4

R5

Figure 6: A segment comprising registers and computing elements.

R1← Ai , R2← Bi ; input Ai ,Bi

R3← R1 ∗R2, R4← C ; multiply and i/ C

R5← R3+R4; add Ci to product

KR Chowdhary Parallel and Pipeline processors 8/ 21



Pipe-lining Example

Table 1: Computation of expression Ai ∗Bi +Ci in space and time in 3-stage pipeline.

Clock pulse Segment 1 Segment 2 Segment 3
no. R1, R2 R3, R4 R5

1. A1, B1 −, − -
2. A2, B2 A1 ∗B1, C1 -
3. A3, B3 A2 ∗B2, C2 A1 ∗B1+C1

4. A4, B4 A3 ∗B3, C3 A2 ∗B2+C2

5. A5, B5 A4 ∗B4, C4 A3 ∗B3+C3

6. − − A5 ∗B5, C5 A4 ∗B4+C4

7. − − −, − A5 ∗B5+C5

◮ Any operator that can be decomposed into a sequence of sub-operations
of about the same components can be implemented by pipeline processor.

◮ Consider that for a k-segment pipeline with clock cycle time =tp sec.,
with total n no. of tasks (T1,T2, . . . ,Tn) are required to be executed.

◮ T1 requires time equal to k .tp secs. Remaining n−1 tasks emerge from
the pipeline at the rate of one task per clock cycle, and they will be
completed in time of (n−1)tp sec, so total clock cycles required =
k+(n−1).

◮ For k = 3 segment and n = 5 tasks it is 3+(5−1) = 7, as clear from
table 1.

KR Chowdhary Parallel and Pipeline processors 9/ 21



Computational Models

◮ Consider an instruction pipeline unit (segment) that performs the same
operation and takes time equal to tu to complete each task. Total time for
n tasks is n.tu. The speedup for no. of segments as k and clock period as
tp is:

S(n) =
n.tu

(k+(n−1))tp
(1)

◮ For large number of tasks, n>> k−1, k+n−1≈ n, so,

S(n) =
n.tu
n.tp

(2)

=
tu

tp
(3)

◮ Instruction pipelining is similar to use of assembly line in manufacturing
plant

◮ An instruction’s execution is broken in to many steps, which indicates the
scope for pipelining

◮ pipelining requires registers to store data between stages.

KR Chowdhary Parallel and Pipeline processors 10/ 21



Computational Models

Parallel computation with serial section model:
◮ It is assumed that fraction f of a given task (computation) cannot be

divided into concurrent subtasks. The remaining part (1− f ) is assumed
to be dividable. (for example, f may correspond to data i/p).

◮ The time required to execute the task on n processors is:

tm = f .ts +(1− f ).
ts

n
(4)

◮ The speedup is therefore,

S(n) =
ts

f .ts +(1− f ). tsn
(5)

=
n

1+(n−1).f
(6)

◮ So, S(n) is primarily determined by the code section, which cannot be
divided.

◮ If task is completely serial (f = 1), then no speedup can be achieved even
by parallel processors.

◮ For n→ ∞,

S(n) =
1

f
(7)

which is maximum speedup.

KR Chowdhary Parallel and Pipeline processors 11/ 21



Computational Models

◮ Improvement in performance (speed) of parallel algorithm over a
sequential is limited not by no. of processors but by fraction of the
algorithm (code) that cannot be parallelized. (Amdahl’s law).

◮ Considering the communication overhead:

S(n) =
ts

f .ts +(1− f )(ts/n)+ tc
(8)

=
n

f .(n−1)+1+n(tc/ts)
(9)

◮ For n→ ∞,

S(n) =
n

f (n−1)+1+n(tc/ts)
(10)

=
1

f +(tc/ts)
(11)

◮ Thus, S(n) depends on communication overhead tc also.

KR Chowdhary Parallel and Pipeline processors 12/ 21



Pipe-lining processors

Instruction Pipe-lining: typical stages of pipeline are:

1. FI (fetch instruction)

2. DI (decode Instruction)

3. CO (calculate operands)

4. FO (fetch operands)

5. EI (execute instruction)

6. WO (write operands)

KR Chowdhary Parallel and Pipeline processors 13/ 21



Instruction Pipe-lining

◮ Nine different instructions are to be executed

◮ The six stage pipeline can reduce the execution time for 9 instructions
from 54 time units to 14 time units.

time units →
Instruc. 1 2 3 4 5 6 7 8 9 10 11 12 13 14

In1 FI DI CO FO EI WO

In2 FI DI CO FO EI WO

In3 FI DI CO FO EI WO

In4 FI DI CO FO EI WO

In5 FI DI CO FO EI WO

In6 FI DI CO FO EI WO

In7 FI DI CO FO EI WO

In8 FI DI CO FO EI WO

In9 FI DI CO FO EI WO

◮ The diagram assumes that each instruction goes through 6 stages of
pipeline.

◮ But, for example, a load instruction does not need WO.

◮ It is also assumed that there is no memory conflicts, for example, FI, FO,
WO in all require memory access (together).

◮ The value may be in cache, or FO/WO may be null.

◮ Six stages may not be of equal duration, conditional branch/interrupt
instruction may invalidate several fetches

◮ After which stage it should check for conditional branch/interrupt?

KR Chowdhary Parallel and Pipeline processors 14/ 21



Factors in Instruction Pipe-lining

◮ Overhead in each stage of
pipeline for data movements
buffer to buffer

◮ Amount of control logic needed
to handle memory/register
dependencies increases with size
of pipeline

◮ It needs time for the buffers to
operate

◮ Pipeline Hazard occur when
pipeline or its portion stalls.
1. Resource hazard: Two or more

instructions in pipeline require
same resource (say ALU/reg.)
(called structure hazard)

2. Data hazards: conflict in
memory access

3. Control hazards: (called branch
hazards) wrong decision in
branch prediction

KR Chowdhary Parallel and Pipeline processors 15/ 21



Vector Processing

◮ In many computational
applications, a problem can be
formulated in terms of vectors
and matrices. Processing these
by a special computer is called
vector processing.

◮ A vector is:
V = [V1V2V3 . . .Vn]. The index
for Vi is represented as V [i ]. A
program for adding two vectors A
and B of length 100, to produce
vector C is:

◮ Scalar Concept:

for(i=0; i < 100; i++)

c[i]=b[i]+a[i];

◮ In machine language we write it
as:

mvi i, 0

loop: read A[i]

read B[i]

store i = i +1

cmp i, 100

jnz loop

◮ Accesses the arrays A and B, and
only counter needs to updated.
The vector processing computer
eliminates the need of fetching
the instructions, and executing
them. As they are fetched only
once only, decoded once only, but
executes them 100 times. This
allows operations to be specified
only as:

C(1 : 100) =A(1 : 100)+B(1 : 100)

KR Chowdhary Parallel and Pipeline processors 16/ 21



Vector Processing

◮ Vector instructions includes the
initial address of operands, length
of vectors, and operands to be
performed, all in one composition
instruction. The addition is done
with a pipelines floating pointing
point adder. It is possible to

design vector processor to store
all operands in registers in
advance.

◮ It can be applied in matrix
multiplication, for
[l ×m]× [m×n].

KR Chowdhary Parallel and Pipeline processors 17/ 21



RISC v/s CISC

◮ CISC: (Complex instruction set
computer)

1. Complex programs have
motivated the complex and
powerful HLL. This produced
semantic gap between HLL and
machine languages, and
required more effort in
compiler constructions.

2. The attempt to reduce the
semantic gap/simplify compiler
construction, motivated to
make more powerful instruction
sets. (CISC - Complex
Instruction set computing)

3. CISC provide better support for
HLLs

4. Lesser count of instructions in

program, thus small size, thus
lesser memory, and faster
access

◮ RISC: (Reduced instruction set
computer)

1. Large number of Gen. purpose
registers, use of compiler
technology to optimize register
usage

2. R-R operations (Adv.?)
3. Simple addressing modes
4. Limited and simple instruction

set (one instruction per
machine cycle)

5. Advantage of simple
instructions?

6. Optimizing pipeline

KR Chowdhary Parallel and Pipeline processors 18/ 21



Exercises

1. Design a pipeline configuration to carry out the task to compute:

(Ai +Bi )/(Ci +Di )

2. Construct pipeline to add 100 floating point numbers, i.e., find the result
of x1×x2× . . .x100.

3. 3.1 List the advantages of designing a floating point processor in the form of a
k-segment pipeline rather than a k-unit parallel processor.

3.2 A floating-point pipeline has four segments S1,S2,S3 ,S4, whose delays are
100, 90, 100, and 110 nano-secs, respectively. What is the pipeline’s
maximum throughput in MFLOPS?

4. It is frequently argued that large (super) computer is approaching its
performance limits, and the future advances in large computers will
depend on interconnected large number of inexpensive computers
together. List the arguments against and favor.

5. List the features to be added in sequential programming languages, to use
them in large interconnection of small inexpensive computers.

6. Let S1,S2, . . . ,Sk denote the sequence of k-operations on a program.
Suppose that execution of these operations on a uni-processor produces
the same results regardless of the oder of execution of the k Si ’s. Show
that this does not imply that the Si ’s are parallelizable on a
multi-processor.

KR Chowdhary Parallel and Pipeline processors 19/ 21



Exercises

7. Prove that general problem of determining whether two program segments
S1,S2 are parallelizable is undecidable by showing that a solution to this
problem implies a solution to the halting problem for Turing machine.
(Hint: Assume that an algorithm A to determine parallelization exists, and
consider applying A to a program containing the statement: if Turing
machine T halts after at most n steps then S1 else S2).

KR Chowdhary Parallel and Pipeline processors 20/ 21



Bibliography

M. Morris Mano, “Computer System Architecture”, 3nd Edition, Pearson,
2006.

William Stalling, ”Computer Organization and Architecture”, 8th Edition,
Pearson, 2010.

John P. Hayes, “Computer Architecture and Organization”, 2nd Edition,
McGraw-Hill International Edition, 1988.

KR Chowdhary Parallel and Pipeline processors 21/ 21


