Computer Organization (Gate Level and Word Level Designs)

KR Chowdhary Professor & Head *Email: kr.chowdhary@gmail.com webpage: krchowdhary.com*

Department of Computer Science and Engineering MBM Engineering College, Jodhpur

November 14, 2013

Propagation Delay(Δ):

 $z(t + \Delta) = v(t) = x_1(t).\bar{x}_2(t)$. The y is internal state variable. SR Flipflop:

Simple SR Flip-flop

For SR=00, $y_1 = \bar{y}_2 = 0$, or $y_1 = \bar{y}_2 = 1$.

For SR=10,
$$
y_1 = \bar{y_2} = 0
$$
.

• For SR = 01,
$$
y_2 = \bar{y_1} = 0
$$
.

Race Condition:

- ► Let SR =11. Thus, $y_1 = y_2 = 0$ after Δ time (i.e., propagation delay). Now let, SR becomes 00. After delay ∆, $y_1, y_2 = 11$. After further Δ time, $y_1, y_2 = 00$. Then it changes back to 00, and so on.
- ▶ Thus, output Oscillates between 00 and 11. For this to happens, $\Delta_1 = \Delta_2$.
- ► $SR = 11$ is forbidden state. $\Delta_1 \neq \Delta_2$?

Sequential circuits-2

- \triangleright Race conditions are eliminated by timing signals (clock)
- \triangleright Sequential circuits $+$ clock = Synchronous circuits
- \triangleright Circuits not timed by clock are asynchronous circuits (Prone to race conditions. Why?)
- \triangleright Triggering takes place on rising or trailing edge of clock pulse. Before this, the signals are supposed to be stabilized.

- \triangleright Clock active and inactive states: 1, 0. They also correspond to transition from 0-to-1 or 1-to-0.
- \triangleright The period, during the time clock is inactive, must be atleast as long as the worst case signal propagation through C, and active period must be long enough to allow M to make one complete transition.
- \triangleright Behaviour of seq. ckt is described by State table.
- \triangleright What happens if clock period is long and signal passed through forward path feeds back to I/P during true period of CLK?

SR Flip-flop

► For SR=00, there is no change in output y, \overline{y} .

- SR=11 is forbidden. The S(set)=1, R(reset)=0 Sets true o/p y to 1
- SR=01 Resets true $o/p o/p y$ to 0.
- ► Let Δ is propagation delay of a gate, and $\tau \approx 2\Delta$.

$$
y(t+2\Delta) = \overline{R(t+\Delta) + [S(t) + y(t+\Delta)]}
$$

= $\overline{R}(t+\Delta)[S(t) + y(t+\Delta)]$

$$
y(t+\tau) \approx \overline{R}(t)[S(t) + y(t)]
$$

Clocked SR Flip-flop

- \blacktriangleright From table-1 above, using minimization, $y(t+1) = \overline{R}(t)[S(t) + y(t)]$, where $y(t+1)$ is new state and $y(t)$ is previous state.
- \triangleright Other FFs are derived from SR.
- \triangleright No state change occurs without clock pulse
- \triangleright The clock pulse should be sufficiently long, to allow the inputs to stabilize
- \triangleright P, C inputs are Preset/Clear to Set/ Clear without clock

JK and D Flip-flop

 $Y = True$ output, $C = Clear$ signal

- \triangleright In JK (derived from SR FF). From table-2, using minimization, $y(t+1) = J(t)\bar{y}(t) + \bar{K}(t)y(t)$
- ▶ for $JK=00$, there is NO change in output, 10 and 01 causes set and reset of FF, and JK=11 toggles the FF (i.e., I/P 11 is not forbidden).
- \triangleright D (Delay)FF has single input only. With $D = 1$, it sets, and with $D = 0$ it resets the FF. $y(t+1) = D(t)$
- ▶ Most commonly used FF are D-FF because they are useful for temporary storage of data
- ▶ SR input will always be $01/10$ only. $00/11$ input are non-existent, and undefined.
- \triangleright During the positive half of clock, D should be stable. Else transition will occur at Q.

Figure 1: D-flipflop.

T-Flip-flop

- \triangleright A T-FF changes its state every clock cycle(toggles) if its input T is equal to 1.
- \triangleright The triggering (level change at o/p) takes place at positive of CLK.

Figure 2: T-Flip-flop.

Registers and Shift Registers

- ▶ Registers store machine words. Shift and rotate data.
- \triangleright below given circuit is shift-right register.

Figure 3: Shift-right register.

Parallel Shift Registers

Figure 4: Parallel Shift register.

4-bit up-counter

Figure 5: Asynchronous counter.

- \blacktriangleright Counters generate control and timing signals
- Q_0 freq. = clk/2, q_1 fre. = clk/4, ..., called ripple counter.
- If all FF change state together \Rightarrow synchronous counter

Word Gates

Figure 6: m-bit NAND word gate.

$$
X = (x_0, x_1, \dots, x_{m-1}),
$$

\n
$$
Y = (y_0, y_1, \dots, y_{m-1})
$$
 are
\n(say) binary words.
\n
$$
\therefore z = f(X, Y),
$$

\nif $z_i = f(x_i, y_i)$ for $i = 0, \dots, m-1$.
\n
$$
\therefore Z = \overline{XY} \Rightarrow (z_0, z_1, \dots, z_{m-1})
$$

\n
$$
= (\overline{x_0 y_0}, \overline{x_1 y_2}, \dots, \overline{x_{m-1} y_{m-1}}).
$$

- ► Two-bit addition takes place for each clock pulse. $z(t) = x(t) + y(t)$.
- It may produce a carry bit $c(t)$. Thus two states (S_0, S_1) are possible, for $c(t-1) = 0$, and $c(t-1) = 1$. Thus, $z(t) = x(t) + y(t) + c(t - 1).$

Each entry has form $s(t+1), z(t)$. y is FF's state variable, $y = 0$ for s_0 , and $y = 1$ for s_1 .

Logic circuit for Serial addition

Figure 7: Serial Adder

Word Level Design: Parallel addition

Figure 8: Word adder

K input m-bit multiplexer

- There are k input lines, each m -bit wide.
- \triangleright The number of select lines p to select a unique input are given by expression $k = 2^p$, where total number of inputs are k.
- Source selection is determined by an encoded pattern of p -bits.

$$
\blacktriangleright z_i = \sum_{i=0}^{k-1} x_{ij} a_i e, \text{ for } j = 0, 1, ..., m-1
$$

Figure 9: k-input m-bit multiplexer.

2 input 4-bit Multiplexer

2-input 4-bit word multiplexer

 $Z_i = X_i \vee Y_i$

Figure 10: 2-1 multiplexer

- It has two input words, each 4-bit long (x_0, x_1, x_2, x_3) and y_0, y_1, y_2, y_3).
- Select line selects either $x_0x_1x_2x_3$ or $y_0y_1y_2y_3$, and delivers at o/p as $Z_0Z_1Z_2Z_3$.
- expression?

Decoders and Encoder

- ▶ Decoder: 1-out-of-2ⁿ or $1/2^n$ decoder is a combinational circuit with *n* input lines and 2^n o/p data lines.
- ► For input $x_0x_1=00$, 01, 10, 11 the output $z_0z_1z_2z_3$ is 1000, 0100, 0010, 0001 respectively. Hence 2- to-4 decoder.

1/4 decoder

 \triangleright Encoder: generates the address. It has inverse function of decoder. Has 2^k i/p lines and k output lines.

Simple Encoder: It is too much restricted. For the required outputs, the input should be exactly as shown. If input deviates from the given, the output is undecidable.

Priority Encoder: It generates the output corresponding to the bit it does for simple encoder. X indicates do'nt care bits.

- 1. Find a minimum cost implementation of the function $f(x_1,x_2,x_3,x_4)$, where $f = 1$ if either one or two of the input variables have the logic value 1. Otherwise, $f = 0$.
- 2. Prove that associative rule does not apply to the NAND operator.
- 3. How you will construct a down counter, i.e, from 1111 to 0000 ?
- 4. The address lines $A_0 \ldots A_{15}$, use encoder to access the corresponding physical address (T/F) .