Computer Organization (Adder/Subtractor, multiplication/div)

KR Chowdhary Professor & Head Email: kr.chowdhary@gmail.com webpage: krchowdhary.com

Department of Computer Science and Engineering MBM Engineering College, Jodhpur

November 14, 2013

Complement of Numbers

2345

-07891556 ----Instead we use: 2345 9's complement of 0789 =+9210 (this is:(r-1)th complement, ----- r for radix) 1 1555 +1 (the overflow 1 ----- is added here) 1556 This can be done in r's complement as: 2345 9211 (this is 10's complement of 0789) _____ 1 1556, extra 1 is dropped. In binary, r's (radix, i.e. 10) complement is 2's complement and 1's complement is (r-1)'s complement.

Hardware for adder/ subtractor

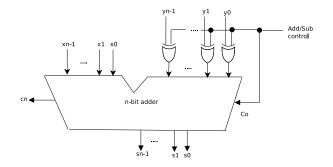


Figure 1: Adder/Subtractor

- Add/subtract line as 0/1 sends Y bits as they were or after complementing as 2s complement.
- \triangleright c₀ true is for 2's complement.
- ▶ For addition, $S \leftarrow X + Y$, for subtraction, $S \leftarrow X Y$.
- Signed numbers' over flow (carry) $C = x_{n-1}y_{n-1}\overline{s}_{n-1} + \overline{x}_{n-1}\overline{y}_{n-1}s_{n-1}$
- n number of FAs for ripple carry adder, or high-speed adder circuit.

Integer Multiplication

```
1 0 1 1 (multiplicand (11))

x 1 1 0 1 (multiplier (13)

1 0 1 1

0 0 0 0

1 0 1 1

1 0 1 1

1 0 1 1

1 0 0 0 1 1 1 1 (product = 143)
```

After every partial product is added into progressive sum, the result is shifted to right. So that next addition will take place one digit left of previous.

Multiplication of positive numbers



Figure 2: $n \times n$ bit multiplication

- Thus multiplication is relatively complex operation.
- For two operands |M| = n for multiplicand and |Q| = n for multiplier, result size = 2n.

Multiplication flow-chart

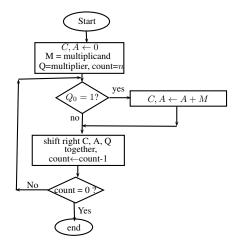
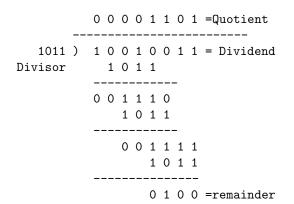
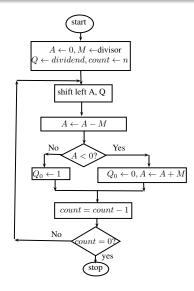



Figure 3: nxn bit multiplication.



When divisor is subtracted from resultant dividend, result is shifted to right.

Initial: Register Q holds Dividend, M holds Divisor

Final: Register A holds remainder, Q holds Quotient.

Division flow-chart

Figure 4: n by n-bit Division

Division

For two operands |M| = n for divisor and |Q| = n for dividend, result size = n.

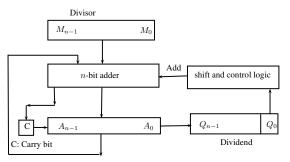


Figure 5: $n \div n$ bit division

- When divisor is subtracted from resultant dividend, result is shifted to right.
- ▶ Initial: Register *Q* holds Dividend, *M* holds Divisor
- ► Final: Register A holds remainder, Q holds Quotient.

- 1. Give a logical justification for $C = x_{n-1}y_{n-1}\overline{s}_{n-1} + \overline{x}_{n-1}\overline{y}_{n-1}s_{n-1}$ in slide no. 3.
- 2. What modifications are required in slides 5,6 to perform signed multiplication?
- 3. What modifications are required in slides 8,9 to perform signed division?
- 4. Why it is not possible to provide exact expression for number of bit-level operations, as a function of input size *n*, for the division algorithm discussed in this slide?