30002:Computer Organization(Quiz#1)

Time: 25 minutes MM 10.

Note: All questions carry equal marks.

- 1. The switching expression corresponding to $f(A, B, C, D) = \Sigma(1, 4, 5, 9, 11, 12)$ is:
 - (a) BC'D' + A'C'D + AB'D (b) ABC' + ACD + B'C'D
 - (c) ACD' + A'BC' + AC'D' (d) A'BD + ACD' + BCD'

Correct answer: A

ABCI	$\bar{C}\bar{D}$	$\bar{C}D$	CD	$Car{D}$
$\bar{A}\bar{B}$	0	1	3	2
$\bar{A}B$	4	5	7	6
AB	12	13	15	14
$A\bar{B}$	8	9	11)	10
$= \bar{A}\bar{C}D + B\bar{C}\bar{D} + A\bar{B}D$				

2. Construct a modulo 8 counter using T-flip flops and the basic gates.

Modulo-8 (up) counter. To get 'down counter' connect true output to next input. To have both together, select the operation through two OR gate followed with one and gate, to feed Q or \bar{Q} to next gate's input.

- 3. For the figure shown below, which of the following option correctly correctly represents f(X,Y,Z)?
 - (A) $X\bar{Z} + XY + \bar{Y}Z$ (B) $X\bar{Z} + XY + Y\bar{Z}Z$
 - (C) $XZ + XY + Y\overline{Z}$ (D) $XZ + X\overline{Y} + \overline{Y}Z$

Ans: The correct answer= $X + \bar{Y}Z$

4. What is the minimum number of D flip-flops needed to design a mod-258 counter ?

 $Ans: \lceil \log 258 \rceil = \mathbf{9}$

5. Consider the circuit, the \oplus operator is EX-OR. The D-FF are initialized to zero level. The following

data:100110000 (1 first) is supplied to the "data" terminal in nine clock cycles. After that the value of $q_2q_1q_0$ are: (A)000 (B) 001 (C) 010 (D) 101

 $Correct\ Answer=\ C$

