
COMPILER CONSTRUCTION (Non-recursive Predictive parser) Fall 2019

Lecture 17: Aug. 22,23 2019

Instructor: K.R. Chowdhary : Professor of CS

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal

publications. They may be distributed outside this class only with the permission of the

Instructor.

17.1 Non-recursive predictive parsing

A non-recursive predictive parser can be built by maintaining a stack a stack explicitly,
rather than implicitly via recursive calls. The parser mimics a leftmost derivation. If w is
the input that has been matched so far, then the stack holds a sequence of grammar symbols
α such that,

S ⇒∗ wα (17.1)

The parser we are going to use is called table driven parser (see Fig. 17.1), with following
arrangements:

• It has an input buffer that contains the string to be parsed with $ as the end marker
symbol,

• a stack containing a sequence of grammar symbols, and

• a parsing table.

The output is parse-tree. The bottom of the stack also holds the end marker symbol $.
Initially the symbol on top of $ symbol in stack is start symbol of the grammar.

The non-recursive predictive parser constructs a top-down parse-tree. The parser is con-
trolled by a program that read X , the symbol on top of the stack, and a – the current
input symbol. If X is non-terminal, the parser chooses an X-production by consulting entry
M [X, a] in the parsing table M . In addition, a code be executed here, say, the code for
constructing a node for a parse-tree. If X is a terminal symbol, then it checks for a match
between the terminal symbol X and current symbol input a. if matched, the terminal is
popped from stack, input pointer is advanced to next symbol, and the process repeats for
next symbol on the stack. In case X is terminal but not matching with input symbol, then
it is case of error.

The behaviour of the parser can be described in terms of configurations, which give the
stack contents and the remaining input.

The Algorithm 1 describes how the configurations can be manipulated. The working of the
algorithm is as follows: Initially, the parser is in a configuration with w $ in the input buffer

17-1

17-2 Lecture 17: Aug. 22,23 2019

..... a + b $

X

Y

Z

$

Input

Predictive
Parsing

Program

Parsing table

Output

M

Stack

Figure 17.1: Table driven predictive parser

and the start symbol S of grammar G is on the top of the stack, i.e., just above $. The
algorithm uses the predictive parsing table M to produce a predictive parsing for the input.

Every output action in the algorithm corresponds to construction of parse-tree, and each
output action is a step in construction of parse-tree, which adds a subtree under one of the
child node of the already partly constructed parse-tree. The stack stores sentential form its
with left-most symbol on top of the stack.

In the following we consider an example to demonstrate steps of parsing.

Example 17.1 Parse the expression id+ id× id.

Consider the grammar given below:

E → T E′

E′ → +T E′ | ε

T → F T ′

T ′ → ×F T ′ | ε

F → (E) | id (17.2)

and the parsing table ?? (Page no. ??), the moves of the non-recursive predictive parser
(Algorithm 1) steps are shown in table 17.1. These moves corresponds to leftmost derivation:

E ⇒ TE′ ⇒ FT ′E′ ⇒

Note that the sentential form in this derivation corresponds to the input that has already
been matched, in the column ”matched”, followed by stack contents. If we concatenate
these columns in the order they exist in table, we get the usual sentential form. The top of
the stack is to the left in the table. When we consider bottom up parsing, it will be more

Lecture 17: Aug. 22,23 2019 17-3

Algorithm 1 Predictive parsing (Input: $ S on stack, w$ in input buffer)

1: Set ip to point to first left-most symbol of w;
2: Set X equal to top stack symbol;
3: ; repeat while stack is not empty
4: while (X 6= $) do
5: if (X is a) then
6: pop the stack and advance ip;
7: else
8: if (X is terminal) then
9: error();

10: else
11: if (M [X, a] is an error entry) then
12: error();
13: else
14: if (M [X, a] = X → Y1Y2...Yk) then
15: output the production X → Y1Y2...Yk;
16: pop the stack;
17: push YkYk−1...Y1 onto stack with Y1 at top;
18: set X to top of stack symbol;
19: end if
20: end if
21: end if
22: end if
23: end while

natural to show the top of the stack to the right. The input pointer points to the left most
symbol of the string in the INPUT column. �

Table 17.1: Moves of predictive parser for input id+ id× id

MATCHED STACK INPUT ACTION
E $ id+ id× id $

TE′ $ id+ id× id $ Output E → TE′

FT ′E′ $ id+ id× id $ Output T → FT ′

id T ′E′ $ id+ id× id $ Output F → id

id T ′E′ $ +id× id $ matched id

id E′ $ +id× id $ Output T ′ → ε

id +TE′ $ +id× id $ Output E′ → +TE′

id+ TE′ $ id× id $ match +
id+ FT ′E′ $ id× id $ Output T → FT ′

id+ id T ′E′ $ id× id $ Output F → id

id+ id T ′E′ $ ×id $ match id

id+ id ×FT ′E′ $ ×id $ Output T ′ → ×FT ′

id+ id× FT ′E′ $ ×id $ match ×
id+ id× idT ′E′ $ id $ Output F → id

id+ id× id T ′E′ $ id $ match id

id+ id× id E′$ id $ Output T ′ → ε

id+ id× id $ $ Output E′ → ε

17-4 Lecture 17: Aug. 22,23 2019

17.2 Review Questions

1. Can the values in FIRST and FOLLOW be non-terminals?

2. Find out the FIRST (A) in the following cases:

(a) A → aA

(b) At aAB

(c) A → BbA

(d) A → ε

17.3 Exercises

1. Show that for the grammar S → aSa | aa, which generate all the strings of even length,
a recursive descent parser recognizes strings aa, aaaa, aaaaaaaa, but not aaaaaa.

2. Do we need LL(1) grammar to select keyword, i.e., is is necessary to lookahead for
first character in the body of a production to check if that production is to be selected,
e.g., if, then, etc.

3. Given the grammar in above question, parse the expression w = aaaba using predictive
parser. Construct a table. Construct a parsing table to show all moves with progressive
contents of stack, input, output, parse-tree, and matched symbols.

4. Given the productions for some grammar S → aBS, B → ABb | ε, A → aA | ε,
construct the predictive parser table for the above productions.

5. Explain in your own words, the construction procedure of predictive-parser table.

6. Explain in descriptive form, in your own words, the predictive parser algorithm.

7. List all the moves for parsing each of the following expressions, for table-driven pre-
dictive parser.

(a) +XY

(b) XY+

(c) (XY)

(d) X()

(e) XX

(f) (+XY)

(g) ()+

(h) ×()

Also answer the followings:

i. Are the rules presented in this chapter sufficient for error recover for above errors?

ii. What special situation you come across in certain errors, for which the rules
discussed so far are not sufficient?

iii. Make your own suggestions for every other expression for error recovery.

Lecture 17: Aug. 22,23 2019 17-5

References

[1] Compilers: Principles, Techniques, and Tools (2nd Edition) by Alfred V. Aho, Monica
S. Lam, et al., Sep 10, 2006.

[2] Compiler design in C (Prentice-Hall software series) by Allen I Holub, Jan 1, 1990.

[3] Engineering a Compiler, by Keith D. Cooper and Linda Torczon, Morgan Kaufmann
Publishers, 2004.

[4] Tools for Large-scale Parser Development, Proceedings of the COLING-2000 Workshop
on Efficiency In Large-Scale Parsing Systems, 2000, pp. 54-54, http://dl.acm.org/
citation.cfm?id=2387596.2387604.

[5] https://www.antlr.org/

