
Distributed Algorithms M.Tech., CSE, 2016

Lecture 4: Breadth first search, shortest paths, and spanning tree.

Faculty: K.R. Chowdhary : Professor of CS

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

They may be distributed outside this class only with the permission of the Instructor.

4.1 Introduction

The next problem we consider is performing breadth-first search (BFS) in a network based on arbitrary
strong connected directed graph having identified source node. More precise, we are interested to construct
a breadth-first spanning tree for the digraph. The purpose for this is to have broadcast communication.
This tree minimizes the communication time for each communication channel.

We define a directed spanning tree of a directed graph G = (V,E) to be a rooted tree that consists entirely
of directed edges in E, all edges directed from parents to children, and that consist every vertex in G. Every
strongly connected digraph has a breadth-first directed spanning tree.

Let the source is i0, the BFS algorithm is supposed to output the structure of the BFS directed spanning-tree
rooted at i0. The processes communicate through the directed edges and do not have idea of the diameter
of the graph.

4.2 BFS algorithm

At any point during the execution there is set of processes that are marked, at begin only i0 is
marked. The process i0 sends out search messages to 1, 2, . . . , all its neighbors. At any round, if
an unmarked process receives a search message, it marks itself and chooses one of the processes
from which the search has arrived as its parents. At the first round after a process gets marked,
it sends a search message to all of its outgoing neighbors.

4.3 Complexity

The time complexity of above is at mist O(bd) = |V |, where d is depth (or diameter) of the graph, and b is
branching factor. For message communication, the message m can be piggy-backed in the search, and can
be sent to all the nodes, using BFS.

Since we are considering directed graph, the reverse communication (some of) may be sent through indirect
routs.

In an undirected graph, total time to communicate as a BFS tree is O(diam) and communication complexity
is O(E). Since all the communications go in parallel, the total number of messages are O(diam|E|), where
diam is diameter the graph. Due to E concurrent communications, there will be |E|b bits in a message,
where b is number of bits needed to represent a UID. This yields total O(diam|E|b × |E|) = O(diam|E|2b)
bits of communication. But, since only E messages are concurrent, this figure is only O(|E|2b).

4-1

4-2 Lecture 4: Breadth first search, shortest paths, and spanning tree.

4.4 Applications

BFS is one of the most basic building blocks of distributed computing. following are some applications.

broadcast: message broadcast can be implemented along with the establishment of BFS tree. The message
need to propagated only though edges from parents to children. This allows us to reuse the tree, as many
messages can be sent along the same tree. Once the tree is constructed the additional time to send the
message is only O(diam) number of message is only O(n), where n = |V |.

Global Computation: Another application of BFS tree is collection of information from through out the
network or, more generally, the computation of a function is based on distributed inputs. The same can also
be used for bidirectional search.

Electing a leader: BFS can be used o elect a leader in a network with UIDs, even when the processes have
no knowledge of n or diam. For this all the processes can initiate a BFS in parallel. Each process i uses the
tree constructed so far, and the globla computation procedure is used to determine the maximum UID, once
reached, declares itself the leader.

Computing the diameter: The diameter of the network can be computed by having all the processes
initiate BFS in parallel. Each process i uses the tree thereby constructed to determine max-disti, defined
to be the maximum distance from i to any other process in the network. Each process i then uses its BFS
tree for a global computation to discover the maximum of the max-dist values. If the graph is undirected,
the time is O(diam) and the number of messages is O(n.|E|).

4.5 Shortest paths

Consider a strongly connected directed graph, with the possibility of unidirectional communication between
some pairs of neighbors. Assume that each directed edge e = (i, j) has an associated non-negative real
weight, denoted by weight(e) or weighti,j. Weight of a path is sum of the weights on its edges.

The problem is to find a Shortest path from the source node i0 to each other node in the graph. All the
shortest path edges are oriented from parent to child.

We assume that every process initially knows the weight of all its incident edges, or, more precisely, that the
weight of an edge appears in special weight variables at both of its end point processes. We want that each
process should be able to determine its distance fro i0, and knows its parent node.

The following algorithm finds the shortest path of each process from i0, for unequal weight of the edges.

Bellman-Ford Algorithm:

Each process i keeps track of dist, the shortest distance from i0 it knows so far, together with
parent - the incoming neighbor that precedes in the path whose weight is dist. Initially, dist0 = 0,
disti = ∞ for i 6= i0, and parent components are undefined. At each round, each process sends,
its dist to all its outgoing neighbors. Then each process i updates its dist by a relaxation step,
in which its takes minimum of its previous dist value and all the values distj + weightj,i, where
j is incoming neighbor. If dist is changed, the parent component is updated accordingly. After
n−1 rounds, dist contains the shortest distance, and parent the parent in the shortest path tree.

It is easy to realize that, after n−1 rounds, the dist values converge to the correct distances. The complexity
of above algorithm is n− 1 and number of messages are (n− 1)|E|

Lecture 4: Breadth first search, shortest paths, and spanning tree. 4-3

4.6 Minimum Spanning Tree

The minimum spanning tree is minimum weight spanning tree (MST) in an undirected graph network with
weighted edges. Again, the main use of for such a tree is as a basis for broadcast communication. A minimum
spanning-weight spanning tree minimizes the total cost for any source process to communicate with all other
processes in the network.

4.6.1 The problem

A spanning forest of an undirected graph G = (V,E) is a forest (i.e., a graph that is but not necessarily
connected) that consists entirely of undirected edges in E and that contains every vertex of G that is
connected. A spanning tree of an undirected graph G is spanning forest of G that is connected. If there are
weights associated with edges in E, then the weight of any subgraph of G is sum of the weights of its edges.
We assume (this time only) that weight(e) = weighti,j = weightj,i. Also, we know that every process knows
the weights of its incident edges.

The problem is to find minimum weight (undirected) spanning tree for the entire network. The general
strategy is to start with spanning forest of all the vertices and then join the edges so that all the vertices
(processes) are connected.

General strategy for MST:

Start with the trivial spanning forest that consists of n individual nodes and no edges. Then
repeatedly do the following: Select an arbitrary component C in the forest and an arbitrary
outgoing edge e of C having minimum weight among the outgoing edges of C. Combine C with
the component at the other end of e, including edge e in the new combined component. Stop
when the forest has a single component.

References

[1] Nancy A. Lynch, “Distributed Algorithms,” Elsevier, 2013.

[2] Allen B. Tucker, Jr., “The computer Science and Engineering Handbook,” CRC Press,
1997.

