
Operating System
Lecture 1,2,3: Course aims, computer system, intro to os, os

abstract view, program run, functions and goals of os
Slides set #1

By Prof K R Chowdhary

JNV University

2023

1/16

Course Aims

▶ This course aims to:
▶ explain the structure and functions of an operating system,
▶ illustrate key operating system aspects by concrete example,

and
▶ prepare you for future courses. . .

▶ At the end of the course you should be able to:
▶ compare and contrast CPU scheduling algorithms
▶ explain the following: process, address space, file.
▶ distinguish paged and segmented virtual memory.
▶ discuss the relative merits of Unix and NT. .

2/16

Course outlines

▶ Introduction to Operating Systems.

▶ Processes & Scheduling.

▶ Memory Management.

▶ I/O & Device Management.

▶ Protection.

▶ Filing Systems.

▶ Case Study: Unix.

▶ Case Study: Windows

3/16

Computer System

Figure 1: Computer System
4/16

Introduction to Operating System

What is an operating system?

▶ A program which controls the execution of all other programs
(applications).

▶ Middleware between user programs and system hardware

▶ Manages hardware: CPU, main memory, IO devices (monitor,
disk, network card, mouse, keyboard etc.)

▶ Objectives:
▶ convenience,
▶ efficiency,
▶ extensibility.

▶ Similar to government

5/16

An abstract view of OS

Figure 2: AN abstract view of OS

▶ The Operating System
(OS):
▶ controls all execution.
▶ multiplexes resources

between applications.
▶ abstracts away from

complexity.

▶ Typically also have some libraries and some tools provided
with OS.

▶ Are these part of the OS? Is browser a tool?

no-one can agree...

▶ For unix/linux user, the OS = the kernel.

6/16

What happens when you run a program? (Background)

▶ A compiler translates high level programs into an executable
(“.c” to “a.out”)

▶ The exe contains instructions that the CPU can understand,
and data of the program (all numbered with addresses)

▶ Instructions run on CPU: hardware implements an instruction
set architecture (ISA)

▶ CPU also consists of a few registers, e.g.,
▶ Pointer to current instruction (program counter or PC)
▶ Operands of instructions, memory addresses (in general

purpose registers)
▶ One or more accumulators

7/16

What happens when you run a program?

▶ To run an exe (.exe file in windows), the CPU
▶ fetches instruction pointed at by PC from memory into IR

(instruction register)
▶ loads data required by the instructions into registers
▶ decodes and executes the instruction
▶ stores results to memory

▶ Most recently used instructions and data are in CPU are
loaded in caches for faster access

8/16

What does the OS do?

▶ OS manages CPU
▶ Initializes program counter (PC) and other registers to begin

execution

▶ OS manages program memory
▶ Loads program executable (code, data) from disk to memory

▶ OS manages external devices
▶ Read/write files from disk.

9/16

1. OS manages CPU

▶ OS provides the process abstraction
▶ Process: a running program
▶ OS creates and manages processes

▶ Each process has the illusion of having the complete CPU,
i.e., OS virtualizes CPU

▶ Timeshares CPU between processes

▶ Enables coordination between processes

10/16

2. OS manages memory

▶ OS manages the memory of the process: code, data, stack,
heap etc

▶ Each process thinks it has a dedicated memory space for itself,
numbers code and data starting from 0 (virtual addresses)

▶ OS abstracts out the details of the actual placement in
memory, translates from virtual addresses to actual physical
addresses

11/16

2. OS manages memory...
This program allocates memory, inputs text string followed by ‘
0’ and stores in allocated memory and prints that on pressing of
EOF char (ctrl-d).

Figure 3: This program does “system calls” memalloc() and free()
12/16

2. OS manages memory...
Running of above program:

Figure 4: Running of program having “system calls”: memalloc() and
free()

13/16

3. OS manages devices

▶ OS has code to manage disk, network card, and other external
devices: device drivers

▶ Device driver talks the language of the hardware devices
▶ Issues instructions to devices (fetch data from a file)
▶ Responds to interrupt events from devices (user has pressed a

key on keyboard)

▶ Persistent data organized as a filesystem on disk

14/16

Design goals of an operating system

▶ Convenience, abstraction of hardware resources for user
programs

▶ Efficiency of usage of CPU, memory, etc.

▶ Issues instructions to devices (fetch data from a file)

▶ Isolation between multiple processes

15/16

History of operating systems

▶ Started out as a library to provide common functionality
across programs

▶ Later, evolved from procedure call to system call: what’s the
difference?

▶ When a system call is made to run OS code, the CPU
executes at a higher privilege level

▶ Evolved from running a single program to multiple processes
concurrently

16/16

