
Operating system concepts
Process Synchronization (Producer-consumer,

critical section, mutex)
Slides Set #10

By Prof K R Chowdhary

JNV University

2023

1/15

Interprocess Communication

▶ A concurrent process may
be either independent
processes or cooperating
processes.

▶ Reasons for providing
process cooperation:
▶ Information sharing.
▶ Computation speedup.
▶ Modularity.
▶ Convenience.

▶ Cooperating processes
require an interprocess
communication (IPC)
mechanism to exchange
data and information.

▶ Two fundamental models
of interprocess

communication: shared
memory and message
passing.

Figure 1: (a) Message passing, (b)
Shared Memory

2/15

1. Shared-Memory System, 2. Message passing

▶ Shared Memory:

- Interprocess communication using shared memory requires
communicating processes to establish a region of shared
memory (see Fig. 1).

- The form of the data and the location are determined by these
processes and are not under the operating system’s control.

- Ensure that they are not writing to the same location
simultaneously.

▶ Message Passing:

- send(A,message) :Send a message to mail box A.

- receive(A,message) :Receive a message from mailbox A

- Sockets: For network communications

3/15

Producer-consumer Problem

▶ Processes can execute concurrently or in parallel.

▶ The concurrent or parallel execution can contribute to issues
involving the integrity of data shared by several processes.

▶ Consider the bounded buffer (buffer size fixed). This allows
for at most “BUFFERSIZE - 1” items in the buffer.

-:Producer Process code:-

while (true){

/* produce an item in next produced */

while (counter == BUFFERSIZE);

/* do nothing */

buffer[in] = next_produced;

in = (in + 1) % BUFFERSIZE;

counter++;

}

4/15

Producer-consumer problem...
-:Consumer process code:-

while (true) {

while (counter == 0);

/* do nothing */

next_consumed = buffer[out];

out = (out + 1) % BUFFERSIZE;

counter--;

/* consume the item in next consumed */

}

We would arrive at this incorrect state because we allowed both
processes to manipulate the variable counter concurrently. (race!)
▶ Questions: On producer-consumer problem.

- Meaning of ”while (counter == BUFFERSIZE);” in producer?

- Is buffer[] global array?

- Are “in” and “out” global variables?

- Meaning of “while (counter == 0);” in consumer?
5/15

Critical-Section Problem
▶ Consider a system consisting of n processes {P0,P1, ...,Pn−1}.
▶ Each process has a segment of code, called a critical section,

in which the process may be changing common variables,..
▶ Each process must request permission to enter its critical

section.
▶ The critical section may be followed by an exit section.

do {

--- entry into section ---

[critical section]

--- exit from section

remainder code

} while true;

▶ Questions:

- Give any five examples, where in the operating the
producer-problem occurs?

- What is meaning of entry into critical section?
6/15

Critical-Section Problem...

▶ A solution to the critical-section problem must satisfy these
requirements:

1. Mutual exclusion.
2. Progress (selection of which goes into critical section cannot

be postponed indefinitely).
3. Bounded waiting (for critical section).

▶ Questions:

- What operation happens in the critical section?

- Examples of critical section in real-life?

- What is meaning of mutual-exclusion?

- Progress means what?

- Difference between point 2 and 3 above?

7/15

Handling Critical-Section in Kernel processes

▶ Two general approaches are used to handle critical sections in
operating systems: preemptive kernels and nonpreemptive
kernels.

▶ Obviously, a nonpreemptive kernel is essentially free from race
conditions on kernel data structures

▶ a preemptive kernel is more suitable for real-time
programming,

▶ Peterson’s Solution (algorithm) for handling critical section:
SW solution

//whose turn it is to enter criti.sec. (1 -> P1, 2->P2)

int turn;

//flag[0] =true; -> P0 is ready to enter critical section

boolean flag[2];

8/15

Handling Critical-Section in Kernel processes...
▶ Peterson’s solution requires the two processes to share two

data items:

do {

flag[i] = true;

turn = j;

while (flag[j] && turn == j);

critical section

flag[i] = false;

remainder section

} while (true);

▶ The variable turn indicates whose turn it is to enter its critical
section. That is, if turn == i, then process Pi is allowed to
execute in its critical section.

▶ Question:

- What two data items are shared between two processes?

- How it is ensured by above code that only one process enters
the critical section?

9/15

Handling Critical-Section in Kernel processes...

▶ We now prove that this solution is correct. We need to show
that:

1. Mutual exclusion is preserved.
2. The progress requirement is satisfied.
3. The bounded-waiting requirement is met.

▶ To show properties 2 and 3 above, note that a process Pi can
be prevented from entering the critical section only if it is
stuck in the while loop with the condition flag[j] == true &&
turn == j;

10/15

Mutex Locks

▶ The simplest of these tools
is the mutex lock. (In fact,
the term mutex is short for
mutual exclusion.)

▶ A mutex lock has a
boolean variable available
whose value indicates if the
lock is available or not. If
the lock is available, a call
to acquire() succeeds, and
the lock is then considered
unavailable.

▶ The definition of acquire()
is as follows:

acquire() {

while (!available);

/* busy wait */

available = false;

}

do {

acquire_lock()

critical section

release_lock()

remainder section

} while (true);

The definition of release()
is as follows:

release() {

available = true;

}

11/15

Mutex Locks...

▶ Questions:

- What are the disadvantages of mutex lock (called also
spinlock)?

▶ What is meaning of ”spinlock”?

- “Busy waiting wastes CPU cycles” means what?

- Are there possible advantages of spinlocks?

- Does mutex prevent the race condition?

12/15

Building a mutex Lock

▶ Goals of a lock implementation:

- Mutual exclusion (obviously!)

- Fairness: all threads should eventually get the lock, and no
thread should starve

- Low overhead : acquiring, releasing, and waiting for lock
should not consume too many resources

▶ Implementation of locks are needed for both user-space
programs (e.g., pthreads library) and kernel code

▶ Implementing locks needs support from hardware and OS

▶ Questions:

- What are goals of implementation of mutex lock?

- What are functions of “available”, “acquire” and “release”?

13/15

Critical section and locks

▶ Consider update of shared variable balance in C code with
operation:

balance = balance + 1;

▶ We can use a special lock variable to protect it

lock_t mutex; //some globally allocated lock ‘mutex’

....

lock(&mutex);

balance = balance +1;

unlock(&mutex);

▶ All threads accessing a critical section share a lock
(function())

▶ Only one threads succeeds in locking, i.e., owner of lock

▶ Other threads that try to lock cannot proceed further until
lock is released by the owner

▶ pthreads library in Linux provides such locks

14/15

Is disabling interrupts enough?
▶ Is this enough?

void lock(){

DisableInterrupts();

}

void unlock(){

EnableInterrupts();

}

▶ No, not always!

- Many issues here:

- Disabling interrupts is a privileged instruction and program
can misuse it (e.g., run forever)

- Will not work on multiprocessor systems, since another thread
on another core can enter critical section

▶ This technique is used to implement locks on single processor
systems inside the OS

- Need better solution for other situations
15/15

