
Operating system concepts
Process Synchronization (Semaphores, deadlocks)

Slides Set #11

By Prof K R Chowdhary

JNV University

2023

1/21



Semaphores are used to solve synchronization problems
▶ Mutex locks are the simplest of synchronization tools.
▶ Semaphores: are more robust, behave similarly to a mutex

lock but can also provide more sophisticated ways for
processes to synchronize

▶ A semaphore S is an integer variable, which is initialized, and
accessed only through two standard atomic operations:
1. wait(): “to test,” (originally P: proberen)
2. signal(): “to increment,” (originally V: verhogen)

▶ Definition of wait():

wait(S) {

while (S <= 0)

; // busy wait

S--;

}

▶ Definition of signal():

signal(S) {

S++;

} 2/21



Semaphores usages: Example
▶ Let two concurrently running processes: P1 with a statement

S1 and P2 with a statement S2 .
▶ We want that S2 be executed only after S1 has

completed. In below code processes P1 and P2 share a
common semaphore variable sync, which is initialized to 0.

//Process P1:

S1;

signal(sync);

//Process P2:

wait(sync);

S2;
▶ Questions:

1. Which executes first, P1 or P2? Why?
2. In above, if P1 is in loop of counter 1-5, how many times S1 is

executed?
3. In above, if P2 is in loop of 1-10, how many times S2 is

executed?
3/21



Semaphores usages:

▶ There are two types of semaphores: counting and binary
semaphores.

▶ The semaphore is initialized equal to the number of
resources available. Each process that wishes to use a
resource performs a wait() operation on the semaphore.

▶ When a process releases a resource, it performs a signal()
operation.

▶ When the count for the semaphore goes to 0, all resources are
in use.

4/21



Semaphores basic Questions:

1. What is a semaphore?

2. What is an atomic operations?

3. How the semaphore is busy-wait?

4. Suggest a real-life example of semaphore.

5. Which semaphore behaves like mutex lock (binary/counting)?

6. How many processes can be there in counting semaphore?

7. How many processes can be there in binary semaphore?

8. Which of the wait or signal semaphore is used for entry into
process?

9. When the value of a semaphore is zero, what it indicates?

10. When a process acquires a resource, which semaphore
(wait/signal) is executed?

11. When a process releases a resource, which semaphore
(wait/signal) is executed?

5/21



Semaphore Implementation:

▶ The mutex locks suffers from busy waiting. The wait() and
signal() semaphore present the same problem.

▶ To overcome the need for busy waiting, we can modify the
definition of the wait() and signal() operations:
▶ Rather than engaging in busy waiting, the process can block

itself.
▶ The block operation places a process into a waiting queue

associated with the semaphore,
▶ A process that is blocked, waiting on a semaphore S , should

be restarted when some other process executes a signal()
operation. The process is restarted by a wakeup() operation

▶ Questions:

1. How semaphore can be modified so that it does not consume
cpu cycles due to busy-waiting?

2. How a blocked process can be restarted from sleep?

6/21



Semaphore Implementation in Single processor system
(without busy wait):

▶ Semaphore definition: Let value is initialized to 1.

typedef struct {

int value;

struct process *list;

} semaphore;

▶ wait() semaphore operation definition, using above typedef:

wait(semaphore *S){

S->value--;

if (S->value < 0){ //no busy wait

add this process at end of S->list;

block();

}

}

▶ The block() operation suspends the process that invokes it.

▶ This implementation may have semaphore values negative,
7/21



Semaphore Implementation in single processor system...

▶ The signal() semaphore operation can be defined as:

signal(semaphore *S) {

S->value++;

if (S->value <= 0) {

remove a process P from front of S->list;

wakeup(P);

}

}

▶ List of waiting processes can be easily implemented by a link
field in each process control block (PCB). Each semaphore
contains an integer value and a pointer to a list of PCBs.

▶ One way to add and remove processes from the list so as to
ensure bounded waiting is to use a FIFO queue,

▶ It is critical in that semaphore operations can be executed
atomically (interrupts are disabled).

8/21



Semaphore Implementation in multiprocessor system:

▶ In a multiprocessor environment, interrupts must be disabled
on every processor.

▶ SMP systems must provide alternative locking techniques –
such as compare and swap() or spinlocks to ensure that wait()
and signal() are performed atomically.

▶ It is important to admit that we have not completely
eliminated busy waiting with this definition of the wait() and
signal() operations.

9/21



Semaphores implemenation Questions:

1. Do the basic semaphore consume time due to busy waiting?

2. How to eliminate busy waiting in semaphore?

3. How to make a process sleep?

4. How to wake up a process that has gone into sleep?

5. What is meaning of semaphore value, say, −5 after executing
“value−−”?

6. What is purpose of variable “list” in slide 8?

7. How a semaphore is implemented atomically?

8. How a semaphore is implemented in multiprocessor system?

10/21



Deadlock and starvation
▶ Situation where two or more processes are waiting indefinitely

for an event that can be caused only by one of these waiting
processes. When such a state is reached, these processes are
said to be deadlocked.

▶ Processes P0, P1, each accessing two semaphores, S and Q
implemented on single processor system, are set to value 1:

P0 P1

wait(S); <-------> wait(Q);

wait(Q); wait(S);

.. ..

signal(S); signal(Q);

signal(Q); signal(S);

▶ Let P0 executes “wait(S)” and then P1 executes “wait(Q)”.
▶ A set of processes is in a deadlocked state when every process

in the set is waiting for an event to be caused only by another
process in the set.

▶ Another problem related to deadlocks is indefinite blocking or
starvation. 11/21



Priority Inversion:

▶ Scheduling challenge: Problem: A higher-priority process
needs to read or modify kernel data that are currently being
accessed by a lower-priority process

▶ Let there are three processes: L, M, H, whose priorities follow
the order L < M < H. Assume that process H requires
resource R, which is currently being accessed by process L.

▶ Suppose that process M becomes runnable, thereby
preempting process L. Indirectly, a process with a lower
priority – process M – has affected how long process H must
wait for L to relinquish resource R.

▶ In the example above, a priority-inheritance protocol would
allow process L to temporarily inherit the priority of process H,

▶ This problem is known as priority inversion.

12/21



Dead lock Questions:

1. What is deadlock?

2. Give dead-lock example in real-life.

3. What is basic phenomena of occurrence of deadlock?

4. What is priority inversion? How it helps for removing
deadlock?

5. What is starvation?

6. What is priority-inheritance protocol?

13/21



Classic Problems of Synchronization
There are number of synchronization problems as examples of a
large class of concurrency-control problems. These problems are
used for testing nearly every newly proposed synchronization
scheme.

Bounded buffer problem:

▶ It is commonly used to explain the power of synchronization
primitives. Following is the general structure of this scheme:
Let the producer and consumer processes share the following
data structures:

int n; // n number of resources (buffers)

semaphore mutex = 1; // binary semaphore

semaphore empty = n; // no. of empty buffers

semaphore full = 0; // no. of full buffers

▶ Let there are n buffers, each can hold one item. The mutex
semaphore (with initial value 1) provides mutual exclusion for
accesses to the buffers.

14/21



Classic Problems...: Bounded buffer problem

The structure of the producer process: P0

do {

. . .

/* produce next item */

. . .

wait(empty);

wait(mutex);

. . .

/* add next produced to the buffer */

. . .

signal(mutex);

signal(full);

} while (true);

15/21



Classic Problems...: Bounded buffer problem...

The structure of the consumer process: P1

do {

wait(full);

wait(mutex);

. . .

/* remove an item from buffer to next consumed */

. . .

signal(mutex);

signal(empty);

. . .

/* consume the item in next consumed */

. . .

} while (true);

Question: Produces/consumer increases/decrease full and
increases/decreases empty.

16/21



Classic Problems: 1) Readers – Writers Problem
▶ Suppose that a database is to be shared among several

concurrent processes. Some of these processes may want only
to read the database, whereas others may want to update
(that is, to read and write) the database.

▶ This problem is referred to as the readers – writers problem.
Following is solution to the first readers – writers problem.
Consider following data structures:

semaphore rw_mutex = 1; //binary

semaphore mutex = 1;//binary

int read_count = 0;//how many proc. are reading now

▶ The structure of a writer process: P0

do {

wait(rw_mutex); // that is, update

. . .

/* writing is performed here */

. . .

signal(rw_mutex);

} 17/21



Classic Problems: Readers – Writers...
Code for a reader process: P1

do {

wait(mutex);

read_count++; // update read count

if (read_count == 1) // one item is to be read

wait(rw_mutex); //wait on rw_mutex if that is busy

signal(mutex); // it checks for count=1, and remains

//locked until reading is over (count=0)

. . .

/* reading is performed here */

. . .

wait(mutex);

read_count--;

if (read_count == 0)

signal(rw_mutex);

signal(mutex);

} while (true);

18/21



Classic problem:

1. What is readers-writers problem?

2. Why deadlock occurs in reader-writers problem?

3. Can there be more that two processes that can use rw mutex?

4. Why the variables in slide no. 17 are so initialized?

19/21



The Dining-Philosophers Problem

▶ Consider five philosophers
who spend their lives
thinking and eating. The
philosophers share a
circular table surrounded by
five chairs, each belonging
to one philosopher.

▶ The dining-philosophers
problem is considered a
classic synchronization
problem

▶ One simple solution is to
represent each chopstick
with a semaphore.

semaphore chopstick[5];

do {

wait(chopstick[i]);

wait(chopstick[(i+1) % 5]);

. . .

/* eat for awhile */

. . .

signal(chopstick[i]);

signal(chopstick[(i+1) % 5]);

. . .

/* think for awhile */

. . .

} while (true);
20/21



The Dining-Philosophers Problem...

Several possible remedies to this deadlock problem are replaced by:

▶ Allow at most four philosophers to be sitting simultaneously
at the table.

▶ Allow a philosopher to pick up his chopsticks only if both
chopsticks are available

▶ Use an asymmetric solution – that is, an odd-numbered
philosopher picks up first his left chopstick and then his right
chopstick, whereas an even-numbered does this in reverse,

▶ Questions:

1. Why there is a deadlock in this problem?
2. How the asymmetric solution works?
3. There are still more solution(?)

21/21


